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OBJECTIVE

Obesity is a key risk factor for type 2 diabetes; however, up to 20% of patients
are normal weight. Our aim was to identify metabolite patterns reproducibly pre-
dictive of BMI and subsequently to test whether lean individuals who carry an
obese metabolome are at hidden high risk of obesity-related diseases, such as
type 2 diabetes.

RESEARCH DESIGN AND METHODS

Levels of 108 metabolites were measured in plasma samples of 7,663 individuals
from two Swedish and one Italian population-based cohort. Ridge regression was
used to predict BMI using the metabolites. Individuals with a predicted BMI
either >5 kg/m2 higher (overestimated) or lower (underestimated) than their
actual BMI were characterized as outliers and further investigated for obesity-
related risk factors and future risk of type 2 diabetes and mortality.

RESULTS

The metabolome could predict BMI in all cohorts (r2 5 0.48, 0.26, and 0.19). The
overestimated group had a BMI similar to individuals correctly predicted as nor-
mal weight, had a similar waist circumference, were not more likely to change
weight over time, but had a two times higher risk of future type 2 diabetes and
an 80% increased risk of all-cause mortality. These associations remained after
adjustments for obesity-related risk factors and lifestyle parameters.

CONCLUSIONS

We found that lean individuals with an obesity-related metabolome have an
increased risk for type 2 diabetes and all-causemortality compared with lean individ-
uals with a healthy metabolome. Metabolomics may be used to identify hidden
high-risk individuals to initiate lifestyle and pharmacological interventions.

The epidemic of obesity is a global health burden, resulting in 2.8 million deaths
each year (1) and co-occurring with a rapid increased prevalence of type 2 diabe-
tes. Even if obesity is the key modifiable risk factor for type 2 diabetes, up to 20%
of patients with type 2 diabetes of normal weight (2). Obesity is defined by BMI,
an imprecise measure that may not accurately describe the associations between
obesity and its comorbidities (3). In this light, there are individuals with a hidden
increased risk for obesity-related health issues despite having a normal BMI. Con-
versely, some individuals may have a high BMI but remain more resistant to
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common co-occurring pathologies, fre-
quently referred to as metabolically
healthy obesity (MHO) (4).
Metabolomics has appeared as a useful

discipline in characterizing the human
metabolism (5). Several studies have
found associations between the plasma
metabolome and obesity (6,7), highlight-
ing potential obesity-related metabolic
dysregulation. Such obesity-related metab-
olites include amino acids and metab-
olites of amino acid catabolism, lipids,
and nucleotides. Several of these plasma
metabolites have also shown BMI-inde-
pendent associations with future risk of
type 2 diabetes (8–11), cardiovascular
disease (12–14), and mortality (15,16) in
several prospective studies, indicating
that these metabolites may have the
potential to refine the definition of obe-
sity beyond anthropometrics. Cirulli et al.
(17) found that a pattern of 49 plasma
metabolites was strongly associated with
BMI and applied this pattern to classify
individuals as obese or normal weight.
Individuals who were classified as obese
according to the metabolome had a
twice as high risk for future cardiovascu-
lar events and more pronounced insulin
resistance than BMI-matched individuals
who were classified as normal weight by
the metabolome (17). These findings
indicate that a portion of the normal
weight population is at an increased risk
of obesity-related diseases, despite being
characterized as normal weight accord-
ing to anthropometrics.
We applied plasma metabolomics in

7,663 individuals from three population-
based cohorts to robustly identify two
separate strata of the population: nor-
mal weight individuals with an obese
metabolome and obese individuals with
a normal weight metabolome. Hypothe-
sizing that these metabolome alterations
are associated with obesity-related pathol-
ogies, we investigated whether the risk of
future type 2 diabetes and all-cause mor-
tality was different in these strata com-
pared with normal weight and obese
counterparts.

RESEARCH DESIGN AND METHODS

Study Samples
Plasma levels of metabolites were mea-
sured in 7,663 individuals from two
Swedish and one Italian population-
based cohort. Two were cross-sectional
cohorts (Malm€o Offspring Study [MOS]

and Cilento in Aging Outcomes Study
[CIAO]) and the other a prospective
cohort (Malm€o Diet and Cancer Study
[MDC]). The ethics committee of Lund
University approved the study protocols
for MOS (DNR 2012/594) and MDC (DNR
2009/633), and the Regional Board of
Ethics Azienda Sanitaria Locale Napoli
Sud (20171220; Naples, Italy) approved
the protocols for CIAO, and all partici-
pants provided written informed con-
sent. Participants who were diagnosed
with diabetes or a BMI <18 kg/m2 were
excluded from the analyses. An overview
of the three cohorts and excluded partic-
ipants can be found in Supplementary
Fig. 1.

The MDC is a population-based pro-
spective cohort consisting of 28,449 indi-
viduals. The cardiovascular cohort of
MDC was designed to study the epidemi-
ology of carotid artery disease, with par-
ticipants being enrolled between 1991
and 1996 (18). Among the 5,405 partici-
pants with fasted blood samples, citrate
plasma was available for 3,833. After
applying exclusion criteria, 3,579 samples
were submitted for metabolite analysis.
During an average follow-up time of 18.2
years, 491 participants developed type 2
diabetes, and within 19.7 years, 967 par-
ticipants died. Participants from the
cardiovascular cohort of MDC were
also invited to a follow-up examina-
tion between 2007 and 2012. Anthro-
pometric measurements from the re-
examination (n = 1,416) have been
used to calculate longitudinal weight
change in MDC.

MOS is an ongoing population-based
cohort study where adult (>18 years
old) children and grandchildren from
the MDC study are recruited (19). Par-
ticipants were invited through letter
and visited the research clinic where
overnight fasting EDTA plasma samples
were collected and anthropometric
measurements performed. Plasma sam-
ples were available for 3,430 partici-
pants, and metabolomic analysis was
performed on 3,263 samples after appli-
cation of exclusion criteria.

CIAO is a population-based cohort
from the area of Cilento in the Campa-
nia region of South Italy. A random sam-
ple of middle-aged (50–67 years old)
individuals from Cilento were invited
through their local primary health care
providers (20). A total of 935 individuals
had overnight-fasted EDTA plasma sam-

ples available, and metabolomic analysis
was performed on 821 samples after
application of exclusion criteria.

End Point Definitions, Biochemical
Measurements, and Lifestyle
Assessments
End point retrieval was performed through
record linkage of the personal identifica-
tion number of each Swedish citizen with
Swedish local or national registries (21).
Type 2 diabetes was defined as a fasting
plasma glucose of >7.0 mmol/L or a his-
tory of physician diagnosis of type 2 diabe-
tes, being on antidiabetic medication, or
having been registered in local or national
Swedish diabetes registries (22). Methods
for biochemical measurements and assess-
ment of dietary intakes and physical
activity are found in the Supplemen-
tary Material.

Analytical Procedure
Profiling of plasma metabolites was per-
formed using a ultra-high-performance
liquid chromatography-quadrupole time-
of-flight mass spectrometry system (1290
LC, 6550 MS; Agilent Technologies, Santa
Clara, CA) and has previously been des-
cribed in detail (23). Briefly, plasma sam-
ples stored at �80�C were thawed and
extracted by the addition of 6 volumes
of extraction solution. The extraction
solution consisted of 80:20 methanol/
water. Extracted samples were separated
on an ACQUITY UPLC BEH Amide Column
(1.7 mm, 2.1 * 100 mm; Waters Corpora-
tion, Milford, MA). Information about
quality control, normalization, metabolite
annotation, missing values, and measures
of technical variation is found in the Sup-
plementary Material.

Statistical Analysis
In each cohort, metabolite levels were
mean centered and unit variance scaled.
Outliers were defined as >5 SD units
away from the mean and were imputed
as either �5 or 5 (1.7% in total). BMI
was modeled using ridge regression with
the R package glmnet (version 3.0-2)
(24). Metabolome-predicted BMI is ref-
erred to hereafter as metabolic BMI
(mBMI). The l-parameter was optimized
using cv.glmnet, minimizing the mean
squared error, varying l between 1,000
and 0.01 (Supplementary Fig. 2). Model
training was performed in 80% randomly
selected participants from MOS, and vali-
dation was performed in the remaining
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20%. The model was replicated in MDC
and CIAO. Prediction of obesity and over-
weight was assessed using the receiver
operating characteristic area under the
curve (AUC). BMI was mean centered,
and unit variance was scaled for ridge
regression modeling. Participants whose
BMI could be predicted within an error
margin of 5 kg/m2 (mBMI-BMI �5 kg/m2

to 5 kg/m2) were characterized according
to their BMI as normal weight (NW)
(BMI <25 kg/m2), overweight (OW) (BMI
25–30 kg/m2), or obese (OB) (BMI >30
kg/m2). Participants whose BMI was not
predicted within the error margin were
either classified as overestimated (OE)
(mBMI-BMI >5 kg/m2) or underestimated
(UE) (mBMI-BMI less than �5 kg/m2).
Levels for traditional risk factors and of
all metabolites were compared among
BMI classes using ANOVA and Tukey
post hoc test. Prospective analyses of
weight change, type 2 diabetes, and
all-cause mortality was performed in
MDC. The association between BMI class
and weight change was analyzed using
ANOVA, while the associations between
BMI class and incident type 2 diabetes
and all-cause mortality were analyzed
using Cox proportional hazards regres-
sion models. Regression model 1 was
adjusted for age and sex, and model 2
was additionally adjusted for fasting lev-
els of glucose, triglycerides, and HDL cho-
lesterol and smoking status. Differences
in dietary intakes and physical activity
levels between BMI classes were ana-
lyzed using ANOVA and linear regression.
All statistical analyses were performed
using R version 3.6.1 software. ANOVA
was performed using aov, Tukey post hoc
tests using TukeysHSD, AUC using pROC,
regression modeling using survival, and

data visualizations using ggplot2. Scripts
are publicly available at https://github.
com/immu-flo/metabolome_BMI.

RESULTS

There were several differences among
the three investigated cohorts. Most
notably, MOS comprised participants
from the age of 18 to 70 years, while the
participants in both MDC and CIAO were
middle-aged (50–65 years old). There
were also differences in several meta-
bolic risk factors among the cohorts,
such as BMI and fasting glucose levels
(Table 1).

A Wide Range of Metabolites Is
Associated With Obesity
We used 108 plasma metabolites to
find associations with BMI in the
7,663 participants from the three
investigated cohorts. A ridge regres-
sion model was trained in a subset of
80% randomly selected participants
from MOS (n = 2,611, BMI 26.0 ± 4.6
kg/m2). In the validation set, compris-
ing the remaining 20% (n = 652, BMI
26.0 ± 4.7 kg/m2), the ridge regres-
sion model could explain approxi-
mately one-half of the variation of
BMI (r2 = 0.476) (Fig. 1A). The model
predicted both OB (AUC 0.936) and
OW (AUC 0.803) compared with NW.
The model was validated in MDC and
CIAO and was able to predict BMI
with good accuracy (MDC: r2 = 0.256;
CIAO: r2 = 0.196) (Fig. 1B and C). In
both MDC and CIAO, the model could
predict OB (AUC 0.86 and 0.86, respec-
tively) and OW (AUC 0.71 and 0.70,
respectively) compared with NW.

Metabolites of different biochemical
classes contributed to the OB-predictive

model, such as amino acids (glutamate,
cystine, and tryptophan), acylcarnitines
(C14:2 and C18:0), nucleotides (N2,N2-
dimethylguanosine), and food-derived
metabolites (b-carotene and proline
betaine) (Fig. 1D). The metabolites that
contributed most to the model in a pos-
itive direction were dimethylguanidino
valerate (DMGV) and glutamate and in
the negative direction, acylcarnitines
C14:2 and C18:2.

Outliers of Metabolome-Predicted
BMI Have Different Levels of
Circulating Lipids
Outliers of the BMI prediction (mBMI),
with an error margin >5 kg/m2, were
either classified as OE (mBMI > BMI) or
UE (mBMI < BMI). In MOS, 88.7% (n =
2,894) had a BMI predicted within the
error margin, 4.1% were classified as OE
(n = 133), and 7.2% were classified as
UE (n = 236). A similar proportion of
participants were predicted within the
error margin in MDC (90.1%), while
3.8% were characterized as OE (n =
132) and 6.1% as UE (n = 210). In CIAO,
the proportion of participants predicted
within the error margin was slightly
lower (81.6%), while 9.7% were OE (n =
80) and 8.6% were UE (n = 71).

The average BMI in the OE groups
(MOS 21.8 kg/m2, MDC 20.8 kg/m2, CIAO
24.9 kg/m2) was similar to NW in all three
cohorts, while the average BMI of the UE
groups (MOS 35.4 kg/m2, MDC 33.6 kg/
m2, CIAO 37.9 kg/m2) was similar to OB.
Despite this large difference in BMI
between OE and UE, the mBMI in OE
(MOS 27.0 kg/m2, MDC 28.1 kg/m2, CIAO
32.0 kg/m2) and UE (MOS 27.7 kg/m2,
MDC 26.2 kg/m2, CIAO 28.2 kg/m2) was
similar to each other and more similar to

Table 1—Characteristics of the participants in the MOS, MDC, and CIAO

MOS (n = 3,263) MDC (n = 3,579) CIAO (n = 821) P

Age (years) 41.59 (14.11) 57.59 (6.00) 57.76 (4.53) <0.001

Female sex (%) 52.4 59.3 56.8 <0.001

BMI (kg/m2) 26.02 (4.63) 25.56 (3.72) 28.08 (5.39) <0.001

Waist circumference (cm) 89.94 (13.69) 82.97 (12.32) 96.46 (69.58) <0.001

Glucose (mmol/L) 5.32 (0.57) 4.96 (0.52) 5.58 (0.65) <0.001

HDL (mmol/L) 1.62 (0.48) 1.40 (0.37) 1.56 (0.39) <0.001

Triglycerides (mmol/L) 1.12 (0.67) 1.28 (0.61) 1.35 (0.78) <0.001

Current smoker (%) 14.0 27.5 23.9 <0.001

Data are mean (SD) unless otherwise indicated.
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OW or OB (Fig. 2A–F). There were no dif-
ferences in waist circumference between
OE and NW in either MOS (P = 0.49) or
MDC (P = 0.17). In CIAO, the waist cir-
cumference in OE was 8 cm larger than in
NW (P < 0.001). Comparing the waist cir-
cumference of UE and OB, there were no
differences in MDC (P = 0.83), and in
both MOS (difference 2.6 cm, P = 0.003)
and CIAO (difference 5 cm, P = 0.003),
the waist circumference in UE was slightly
larger than in OB (Supplementary Fig. 3).
Plasma triglycerides were significantly

higher in OE than NW and lower in UE
than OB in all three investigated cohorts
(Supplementary Fig. 3). For HDL choles-
terol, levels were significantly lower in
OE than NW and higher in UE than OB in
both MOS and CIAO, but no differences
were observed in MDC (Supplementary
Fig. 4). No differences were seen in fast-
ing glucose levels between OE and NW
in any cohort, and slightly lower levels in
UE than OB were seen only in CIAO
(Supplementary Fig. 4). In MOS and
MDC, OE had higher proportions of
smokers than NW (Pdiff < 0.001). The
proportion of smokers in OE was 24.6,
47.2, and 26.0% compared with 13.3,

30.9, and 24.7% in NW in MOS, MDC,
and CIAO, respectively. Group-wise differ-
ences are found in Supplementary Tables
1–3.

Metabolite-Level Differences in
Outliers of Metabolic Obesity Are
Consistent Among Cohorts
In MOS, the levels of 13 metabolites
were significantly different (P < 4.6e-4)
among participants classified as OE and
NW. These included several of the metab-
olites that influence mBMI, such as
DMGV, glutamate, and b-carotene. All 13
metabolites had at least nominally signifi-
cant differences, in a consistent direction,
between NW and OE in at least two of
the three investigated cohorts. For five
metabolites (DMGV, glutamate, b-caro-
tene, isoleucine, and kynurenine), signifi-
cant (P < 0.05) differences were found in
all cohorts (Supplementary Fig. 5 and
Supplementary Table 4).

Normal Weight Individuals With
Metabolic Obesity Are at Higher Risk
of Future Diabetes Mortality
Next, we wanted to investigate whether
being an outlier of mBMI is associated

with risk of future obesity, diabetes, and
death. Prospective analyses of obesity,
type 2 diabetes, and mortality were per-
formed in the MDC cohort. During an
average follow-up of 15.6 years, no differ-
ences in weight change were observed
among any of the five investigated groups
(Supplementary Fig. 6 and Supplementary
Table 5). More specifically, no significant
differences in weight change were seen
between baseline and follow-up between
OE and NW (P = 0.98). However, during
an average follow-up time of 18.5 years,
participants in OE had more than a two-
fold higher risk of developing type 2 dia-
betes (hazard ratio [HR] per SD 2.22, 95%
CI 1.38–3.56, P = 0.001) compared with
NW. This association was attenuated but
remained significant when adjusting for
smoking status and fasting levels of glu-
cose, triglycerides, and HDL cholesterol. In
the adjusted model, there were no signifi-
cant differences in risk of future type 2
diabetes between OE and any of the
other groups (Fig. 3 and Supplementary
Table 6).

Participants in OE compared with NW
were also at almost twice as high a risk
of all-cause mortality within an average

r2=0.48
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follow-up time of 19.7 years (HR 1.85,
95% CI 1.50–2.05, P < 0.001). OE was
also associated with an increased risk of
all-cause mortality compared with OW
(HR 1.72, 95% CI 1.30–2.29, P = 0.0002)
and OB (HR 1.56, 95% CI 1.09–2.24, P =
0.015). After additional adjustments for
smoking status and levels of glucose,
triglycerides, and HDL cholesterol,
these associations were attenuated
but remained statistically significant
with regard to OE versus NW and OW
(Fig. 3 and Supplementary Table 6).
Participants in OB had a 53% increased

risk of type 2 diabetes compared with UE
(HR 1.53, 95% CI 1.08–2.20, P = 0.017)
but not an increased risk of all-cause
mortality (HR 0.84, 95% CI 0.60–1.18, P =
0.32). The association with type 2 diabe-
tes was attenuated after adjustments for
confounders (HR 1.31, 95% CI 0.91–1.87,
P = 0.14) (Supplementary Table 6).

Lifestyle Factors Associated With
Metabolic Obesity
Using dietary assessments in MOS (n =
1,526) and MDC (n = 3,471), we tested
whether seven dietary intakes differed

among the five BMI prediction groups.
In MDC, the diet of OE consisted of
significantly (P < 0.05) more saturated
fat and fewer fruits and vegetables
(Supplementary Fig. 7) and whole
grains than NW. No differences in
intakes were seen for polyunsaturated
fats, fish and shellfish, meat, or added
sugar. The diet of UE consisted of
higher amounts of fruits and vegeta-
bles and lower amounts of polyunsat-
urated fats than OB (Supplementary
Table 7). In MOS, the diet of OE had
significantly (P < 0.05) lower amounts
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of fruits and vegetables than NW
(Supplementary Fig. 7), but no differ-
ences were seen for any other exam-
ined dietary factor. The differences in
intakes of fruits and vegetables between
NW and OE were significant after adjust-
ments for age, sex, and smoking status in
both MDC (b = 6.6, 95% CI 2.9–6.3, P =
4.4e-4) and MOS (b = 8.9, 95% CI 3.6–
14.1, P = 1.0e-3). No differences were
seen between UE and OB in dietary
intakes in MOS (Supplementary Table 7).
Self-assessed levels of leisure time physi-
cal activity were significantly (P < 0.05)
different between OE and NW but not
between UE and OB in MOS, but no sig-
nificant differences were seen in MDC
(Supplementary Table 8). In sensitivity
analysis in MDC (n = 3,472), the risk for
type 2 diabetes and all-cause mortality in
OE compared with NW was only margin-
ally changed after adjustments for intakes
of fruits and vegetables, whole grains,
saturated fats, and leisure time physical
activity (Supplementary Table 9).

CONCLUSIONS

Using the metabolome of 7,663 individ-
uals, the current study identifies a
metabolite fingerprint of BMI (mBMI)
and investigates the risk of type 2 dia-
betes and mortality in individuals whose
mBMI differs from their actual BMI.
Middle-aged individuals who are normal
weight but have an mBMI >5 kg/m2

above their actual BMI have a doubled
risk of future type 2 diabetes and all-
cause mortality compared with individu-
als who are normal weight both accord-
ing to BMI and mBMI. In this study, we
attempted to refine the definition of
obesity by identifying strata of the pop-
ulation who, based on their metabolome,
have different risks of type 2 diabetes
and death compared with what their BMI
indicates.
The association between the metabo-

lome and obesity has been described in
detail in several population-based cohorts
(6,17,25,26). Consequently, most metabo-
lites that strongly influence mBMI in this
study have documented associations with
BMI or waist circumference in previous
publications. For instance, these include
DMGV (27,28), glutamate (29), and the
branched-chain amino acids leucine and
valine (25). Moreover, these metabolites
have been associated with an increased
risk of future type 2 diabetes (10,11,

14,27,30). The associations between
metabolites and BMI were relatively con-
sistent across the three investigated
cohorts. mBMI explained 47% of the vari-
ation of BMI in the validation set of MOS.
Despite the model being trained in MOS,
it was able to explain a large portion of
the variation of BMI (19–26%) in MDC
and CIAO, indicating that the BMI predic-
tion model is not specific to the popula-
tion of MOS but, rather, is generalizable
to independent cohorts with different
characteristics.

The current study was conducted using
data from a relatively limited number of
108 metabolites. Applying similar strate-
gies using a larger number of metabolites
from a wide range of biochemical classes
should improve prediction. For instance,
in Cirulli et al. (17), extending a model
using the 49 metabolites with the stron-
gest associations with BMI to a model
containing 650 metabolites improved the
explained variation of BMI from 39 to
49%. Among the 49 metabolites, several
were also important predictors of BMI in
the current study. Most notably, these
included glutamate, asparagine, leucine,
N2,N2-dimethylguanosine, and kynuren-
ate. Although it is reasonable that a larger
number of metabolites should result in
an improved prediction, the explained
variation of BMI in the current study
ranged from 19 to 47%, which is in line
with previous studies reporting a range
from 23 to 49% (7,17).

A subset of the participants (4.1–9.7%)
were classified as OE (mBMI at least 5
kg/m2 above their actual BMI). The risk
for future type 2 diabetes was twice as
high in OE compared with NW, despite
OE having slightly lower average BMI. In
line with previous findings (17), individuals
in OE compared with NW had higher lev-
els of triglycerides and lower levels of
HDL cholesterol. Fasting glucose levels
were, however, not significantly different
between the groups. There was still a sig-
nificant difference in type 2 diabetes risk
between OE and NW after adjustments
for these potential confounders, although
the association was slightly attenuated.
Similarly, the risk of all-cause mortality
was 80% higher in OE than NW, an associ-
ation that also remained significant after
adjustments for potential confounders.
We argue that characterizing this subset
of the population may be clinically rele-
vant for two separate reasons. First, this
subset of the population is at high risk of

type 2 diabetes and premature mortality
but may likely be missed by conventional
methods because of their normal BMI
and nonelevated fasting glucose levels.
This is further stressed by our finding that
OE does not differ in weight gain over
time compared with NW. Thus, the mBMI
could help to pinpoint this hidden high-
risk subset of the population, motivating
lifestyle and pharmacological interven-
tions. Importantly, since mBMI can iden-
tify increased risk of type 2 diabetes and
mortality up to 20 years before the event,
intervention strategies could be imple-
mented early enough to potentially reach
a substantial risk reduction. Second, alter-
ations in metabolite levels in OE com-
pared with NW could highlight metabolic
pathways involved in the pathological pro-
cess of type 2 diabetes. In the current
study, the five metabolites that consis-
tently differed between OE and NW (i.e.,
DMGV [27,30], glutamate [31,32], b-caro-
tene [10], isoleucine [11,32], and kynure-
nine) have previously been associated
with a future risk of type 2 diabetes. Stud-
ies have indicated a causal link between
branched-chain amino acids, such as iso-
leucine, and diabetes by using Mendelian
randomization (9). Moreover, DMGV is
considered to be an early marker for car-
diometabolic dysfunction and is associated
with attenuated metabolic improvements
of exercise training (28). If a causal link
between the metabolites and either type
2 diabetes or mortality risk can be proven,
such metabolites could be potential phar-
macological target molecules. This strategy
could be particularly efficient for OE, since
weight reduction per se is unlikely to be
effective.

Individuals classified as OE consumed
significantly fewer fruits and vegetables
and had a higher prevalence of smoking
than those classified as NW. These fac-
tors themselves do not explain the dif-
ference in disease risk between OE and
NW, since the associations with type 2
diabetes and mortality remained signifi-
cant after adjustments. Given that life-
style factors are strongly correlated with
one another, it is possible that the dif-
ferences between NW and OE in smok-
ing status and dietary intakes of fruits
and vegetables may be explained by a
generally unhealthy lifestyle, typical for
individuals classified as OE.

The proportion of participants classi-
fied as UE (mBMI at least 5 kg/m2

below their actual BMI) was between
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6.1 and 8.6%. Similar to the comparison
between OE and NW, the risk of devel-
oping type 2 diabetes was 50% higher
in OB than UE, despite that the average
BMI was 2–5 kg/m2 higher in UE. This
association was attenuated after adjust-
ments for confounders. The phenomenon
that a portion of the obese population
may be protected from obesity-related
pathologies, commonly referred to as
MHO, have been discussed extensively
elsewhere, and several definitions have
been suggested (4,33). Our study suggests
that defining MHO on the basis of metab-
olomics may be an alternative. Levels of
type 2 diabetes–related metabolites, such
as DMGV, isoleucine, and leucine, were
different between UE and OB. This is con-
sistent with a lower risk of type 2 diabe-
tes in MHO (34), suggesting that these
metabolites may help to characterize
the metabolic difference between MHO
and metabolically unhealthy obesity and
explain their different clinical prospects.

This study has several limitations.
First, although we show that the associ-
ation between the metabolome and
obesity is consistent across different
cohorts, major hurdles remain to reach
clinical utility, including absolute quanti-
fication of metabolite levels, which is
needed to determine the mBMI clini-
cally. Second, the outlier classifications
were arbitrarily determined as mBMI 5
kg/m2 above or below the actual BMI
and may not be the most clinically rele-
vant classification. Third, since metabo-
lites only were measured at one time
point, we could not evaluate the stabil-
ity of the mBMI classifications over
time. Finally, prospective analyses could
only be performed in one of the investi-
gated cohorts, which calls for replication
of the association between mBMI and
type 2 diabetes and mortality in other
populations to confirm its validity.
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